Set Intersection Theorems and Existence of Optimal Solutions 1 by Dimitri

نویسندگان

  • Dimitri P. Bertsekas
  • Paul Tseng
چکیده

The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental in a number of important optimization topics, including the existence of optimal solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We consider asymptotic directions of a sequence of closed sets, and introduce associated notions of retractive, horizon, and critical directions, based on which we provide new conditions that guarantee the nonemptiness of the corresponding intersection. We show how these conditions can be used to obtain simple and unified proofs of some known results on existence of optimal solutions, and to derive some new results, including a new extension of the Frank-Wolfe Theorem for (nonconvex) quadratic programming. 1 Research supported by Grant NSF Grant ECS-0218328. 2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139. 3 Dept. Mathematics, University of Washington, Seattle, WA 98195 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set Intersection Theorems and Existence of Optimal Solutions

The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental in a number of important optimization topics, including the existence of optimal solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We consider asymptotic directions of a sequence of closed sets, and introduce associa...

متن کامل

On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation

In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the  coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we  give an example to illustrate the applications of our results.

متن کامل

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

Existence of at least three weak solutions for a quasilinear elliptic system

In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...

متن کامل

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004